Taxpayers' Behavioural Responses and the 'Laffer Effect'

John Creedy* and Norman Gemmell**

MOTU Public Policy Seminar, 19 April 2012

* Visiting Professor, Victoria University of Wellington, and Principal Advisor (Tax) The Treasury
 ** Chair in Public Finance, School of Accounting & Commercial Law, Victoria University of Wellington

Motivation

- Increasing micro evidence of various behavioural responses to tax rate changes
- Often summarised in 'taxable income' responses, including:
 - 'real' responses, e.g. labour supply (Chetty, 2011)
 - » avoidance responses (Slemrod)
 - Institutional responses, e.g. wage bargaining (Piketty et al, 2011)
- Aggregate 'Laffer curve' well-known but little useful analytical content
- But 'Laffer curve effects' featuring in micro models of optimal tax structure/reform (Werning, 2007)

Outline of the presentation ...

- For individuals, we ask: "How big do taxable income responses have to be for a tax rate increase to yield no additional revenue?" (the 'Laffer maximum')
- Given a distribution of individuals' taxable income, how does this translate into aggregate revenue-maximising responses?
- For New Zealand's income distribution and multi-step income tax structure, how likely are revenue-reducing responses?

Why do we care...?

- Welfare consequences (Pareto inefficiency) when on 'wrong side' of the Laffer curve (Werning, 2007).
 - Marginal excess burden becomes infinite above revenuemaximising tax rate (Saez et al, 2009)
- Needed for tax policy planning & forecasting consideration of changes in tax structure ...
- Needed as component of other models/analyses in which tax revenue changes are relevant

How do we do it ...?

- Bring together two elements of the effect of tax change on tax revenue:
 - 1. Impact of tax rate change on tax base (income)
 - 2. Impact of income change on revenues
- No. 1 involves a range of types of adjustment: labour supply; income shifting; non-declaration of income, tax-favoured consumption

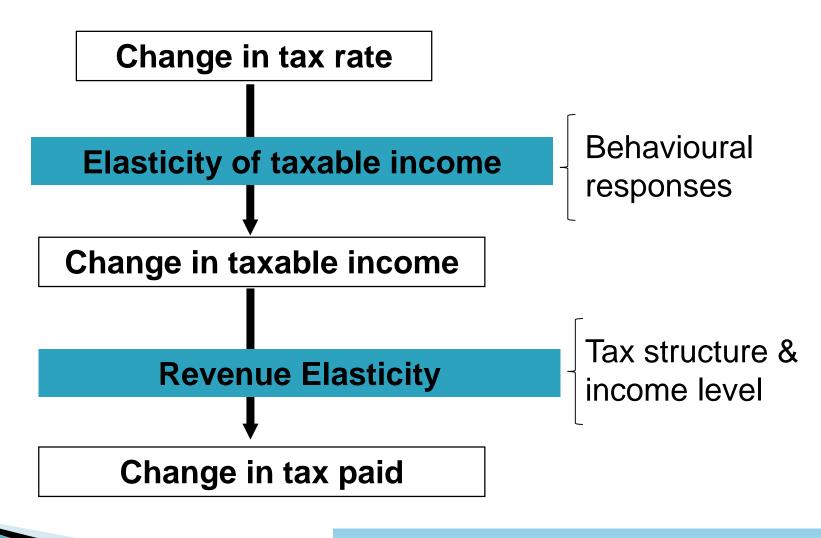
Summarised by Feldstein's (1995) 'elasticity of taxable income': Response of taxable income to changes in the <u>net-of-tax rate</u> $(1-\tau)$

No. 2 captured by the 'revenue elasticity' or 'fiscal drag'

ETI - illustration

Period	τ	1-τ	Income (ETI=0.2) (ETI=0.4) (ETI=0.6)		
1	0.25	0.75	100	100	100
2	0.20	0.80	101.3	102.7	104.0
% change	-20%	+6.7%	+1.3%	+2.7%	+4.0%

For an individual taxpayer ...



Assume no movement into another tax bracket, so no further 'feedback effects'

Previous literature

Elasticity of taxable income (ETI) – wide range of estimates ... narrowing to 0.2 – 0.6.

(e.g. Saez, Slemrod, Giertz, JEL, 2012)

- Estimates unreliable (instrumental vars) and underestimated if 'frictions' (Chetty, 2011)
- Revenue elasticity in ETI literature ignored or treated 'as if' proportional tax (elasticity = 1). SSG examine revenue effect of <u>top rate</u> change.
- Revenue elasticity examined extensively in fiscal drag literature for practical multi-step income taxes (Creedy & Gemmell...)

The Multi-step Tax Function

The multi-step tax function depends on a set of income threshold, $a_k, ..., a_K$, and a corresponding set of marginal tax rates $\tau_k, ..., \tau_K$. Let the tax paid by individual i with income of y_i be denoted $T(y_i) = T(y_i | \tau_1, ..., \tau_K, a_1, ..., a_K)$. Tax revenue can be written as:

$$T(y_i) = \tau_1 (y_i - a_1) \qquad a_1 < y_i \le a_2
 = \tau_1 (a_2 - a_1) + \tau_2 (y_i - a_2) \qquad a_2 < y_i \le a_3
 \tag{1}$$

and so on. If y_i falls into the kth tax bracket, so that $a_k < y_i \leq a_{k+1}$, $T(y_i)$ can be expressed for $k \geq 2$ as:

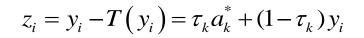
$$T(y_i) = \tau_k \left(y_i - a_k \right) + \sum_{j=1}^{k-1} \tau_j \left(a_{j+1} - a_j \right)$$
(2)

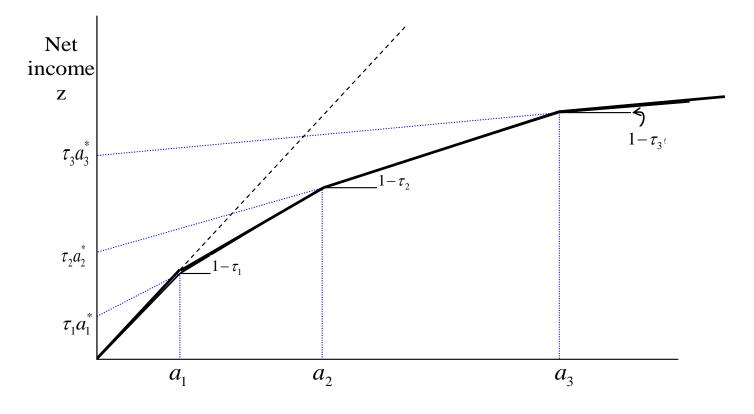
$$T\left(y_{i}\right) = \tau_{k}\left(y_{i} - a_{k}^{*}\right) \tag{3}$$

where:

$$a_k^* = \frac{1}{\tau_k} \sum_{j=1}^k a_j \left(\tau_j - \tau_{j-1}\right)$$
(4)

Net versus gross income





Gross income, y

Measuring elasticities: notation ...

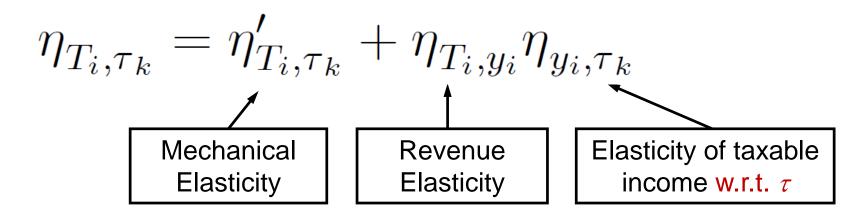
Elasticity of *a* with respect to *b* :

$$\eta_{b,a} = \frac{a}{b} \frac{db}{da}$$

A prime (') indicates a partial elasticity of a with respect to $b: \eta'_{b,a}$

Elasticity of Revenue w.r.t. MTR (τ_k)

Differentiate (3): $T(y_i) = \tau_k (y_i - a_k^*)$, w.r.t. τ_k :

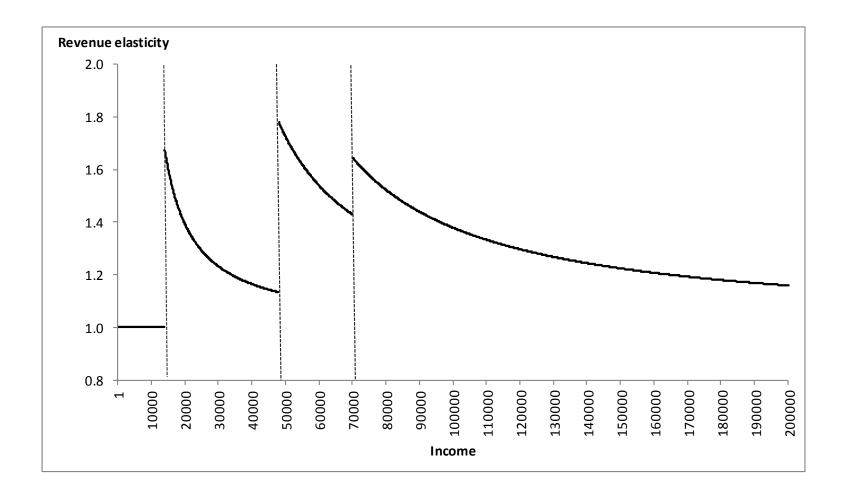


Feleshanical Elfectrievasticiax able Income' (ETI)

$$\eta'_{T_{i},\tau_{k}} = \frac{\tau_{k} (y_{i} - a_{k})}{T(y_{i})} = \frac{(y_{i} - a_{k})}{(y_{i} - a_{k}^{*})} = \frac{T_{k}(y_{i})}{T(y_{i})}$$

$$\lim_{k \to \infty} \frac{1}{1 - \tau}$$

Revenue Elasticity Example New Zealand, 2010

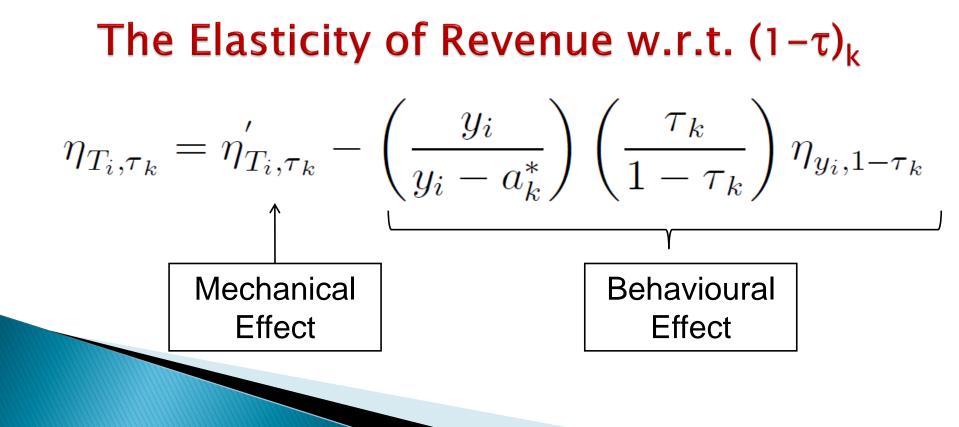


The Revenue Elasticity

.

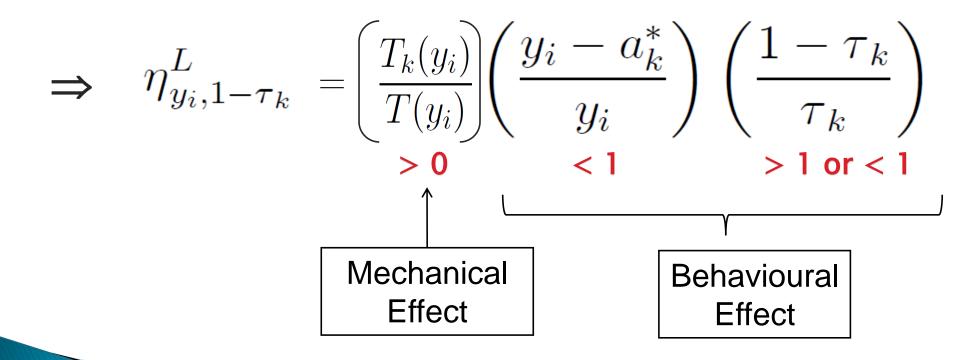
The Mechanical Elasticity

$$\eta_{T_i,y_i} = \frac{y_i}{y_i - a_k^*} \ge 1 \qquad \qquad \eta'_{T_i,\tau_k} = \frac{\tau_k \left(y_i - a_k\right)}{T(y_i)} = \frac{\left(y_i - a_k\right)}{\left(y_i - a_k^*\right)} = \frac{T_k(y_i)}{T(y_i)}$$



The Revenue-maximising ('Laffer') ETI (ETI^L):

Set total elasticity: $\eta_{T_i, \tau_k} = 0$



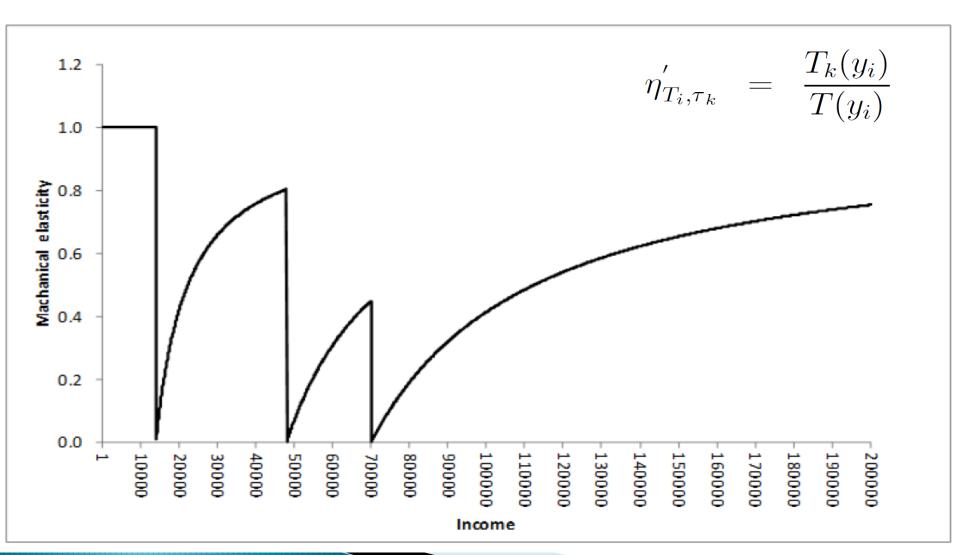
An ETI larger than ETI^L means REDUCED revenue from tax rate rise Can identify the ETI assoc with any revenue target, b (ETI^b): set $\eta_{T_i,\tau_k} = b$ $\eta_{y_{i},1-\tau_{k}}^{b} = (\eta_{T_{i},\tau_{k}}^{\prime} - b) \left(\frac{y_{i} - a_{k}^{*}}{y_{i}}\right) \left(\frac{1 - \tau_{k}}{\tau_{k}}\right)$ <1 > 1 or <1Need not be > 0

NZ revenue-maximising ETIs: single earner, no children

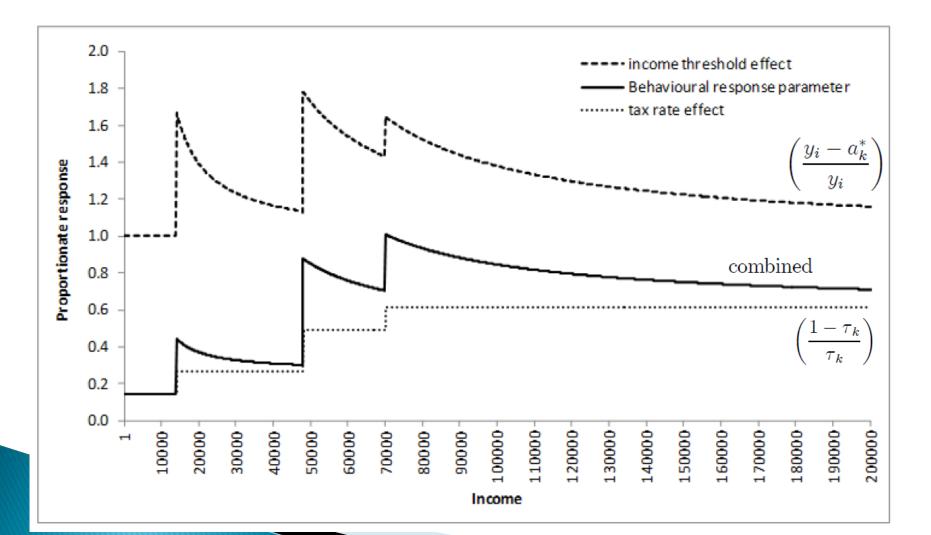
Tax Structure, 2010

	Income threshold	Tax rate	Effective threshold
k	a_k	${ au}_k$	a_k^*
1	1	0.125	1.0
2	14,000	0.21	5667.3
3	48,000	0.33	21061.0
4	70,000	0.38	27500.3

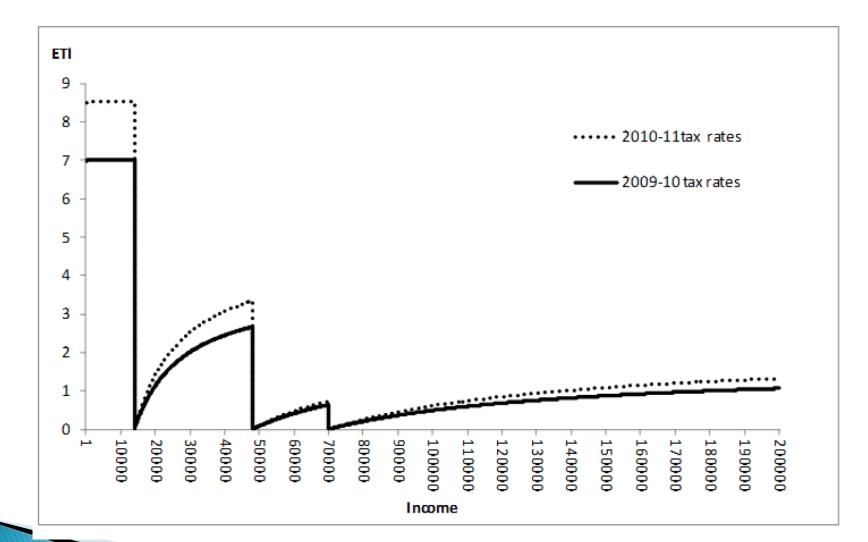
Mechanical elasticities: single earner, no children



Behavioural response components: single earner, no children



ETI^L: single earner, no children

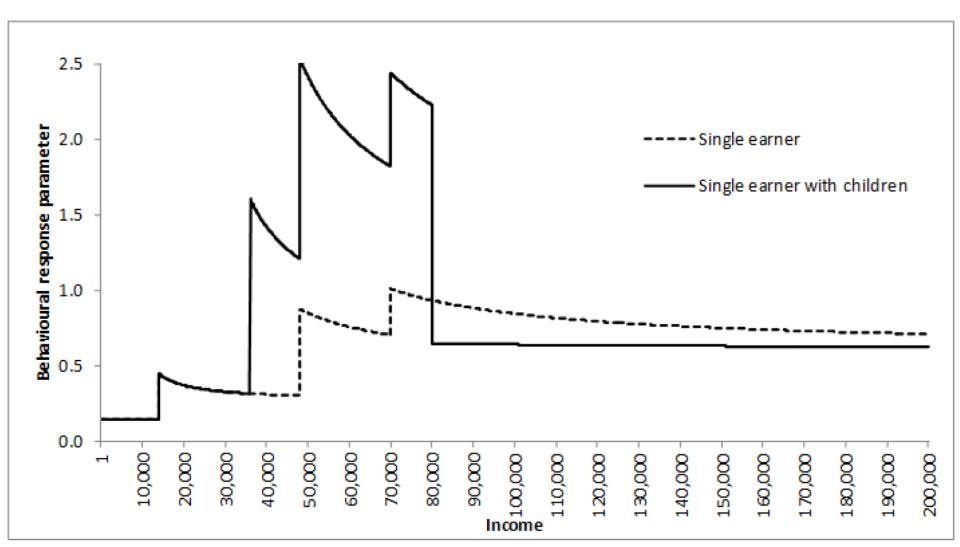


NZ revenue-max. ETIs: single earner <u>with</u> <u>children</u> (example)

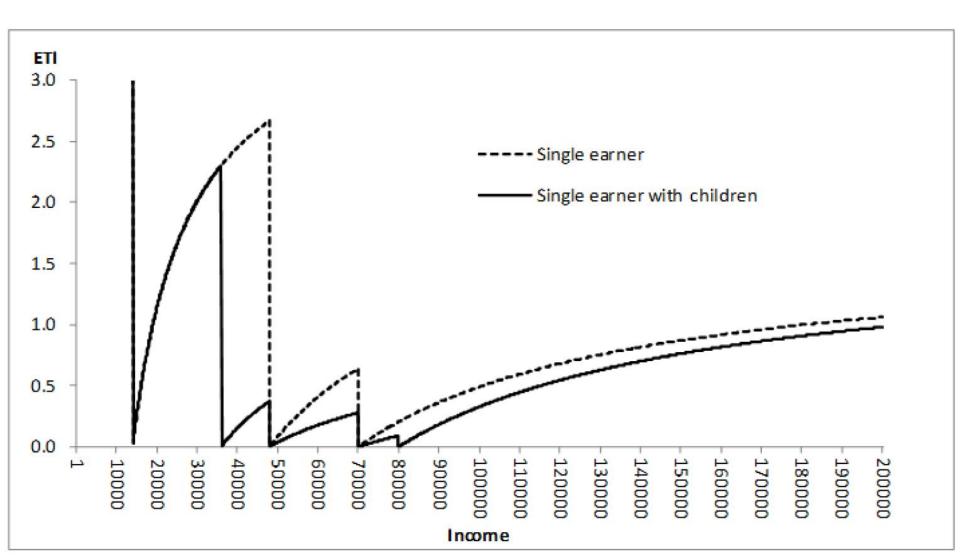
Tax Structure, 2010 (with abatement of WfF)

	Income threshold	Tax rate	Effective threshold
k	a_k	${ au}_k$	a_k^*
1	1	0.125	1.0
2A	$14,\!000$	0.21	5667.3
2B	36,000	0.41	19488.1
3	48,000	0.53	25943.6
4A	70,000	0.58	29741.6
$4\mathrm{B}$	80,000	0.38	3289.8

Behavioural response: single earner with children



ETI^L: single earner with children



Aggregate ETI^Ls ...

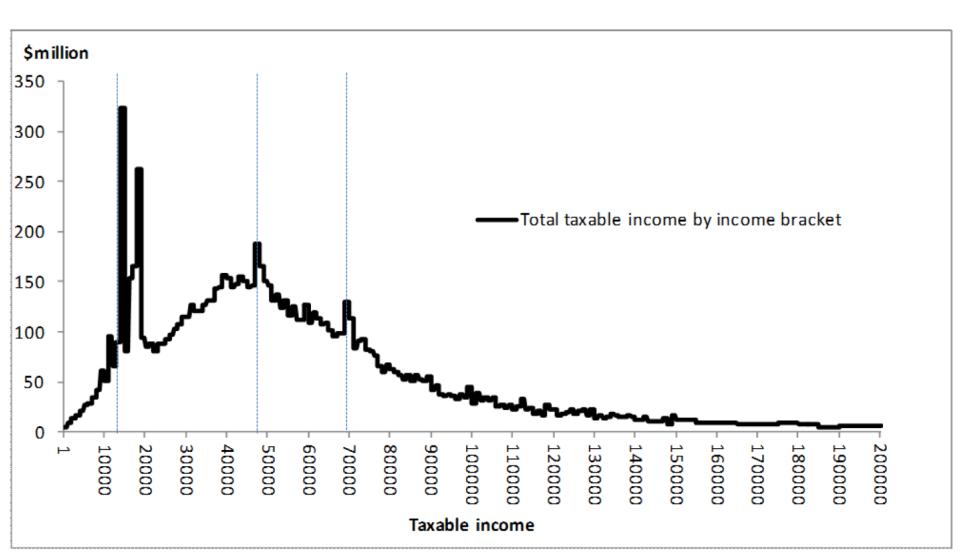
Aggregate ETI^Ls are an income-weighted average of individuals' ETI^Ls

$$\eta_{Y_k,1-\tau_k}^L = \sum_{i=1}^{N_k} \left(\frac{y_i}{Y_k}\right) \eta_{y_i,1-\tau_k}^L$$

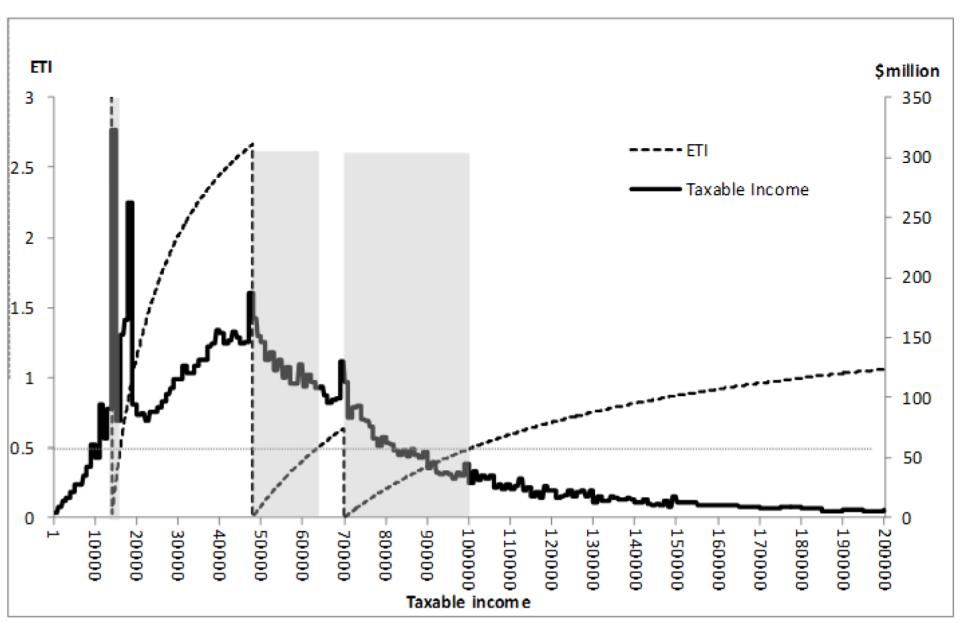
... hence need only information on distribution of taxable income across taxpayer types.
... IRD publishes this for NZ for <u>all</u> taxpayers

combined, but not by taxpayer type.

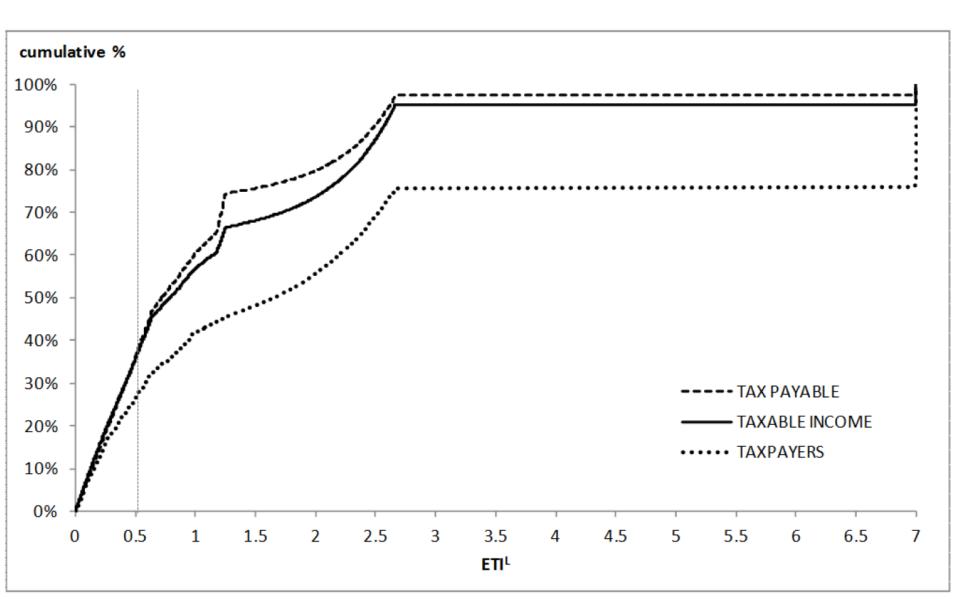
Distribution of taxable income, 2010



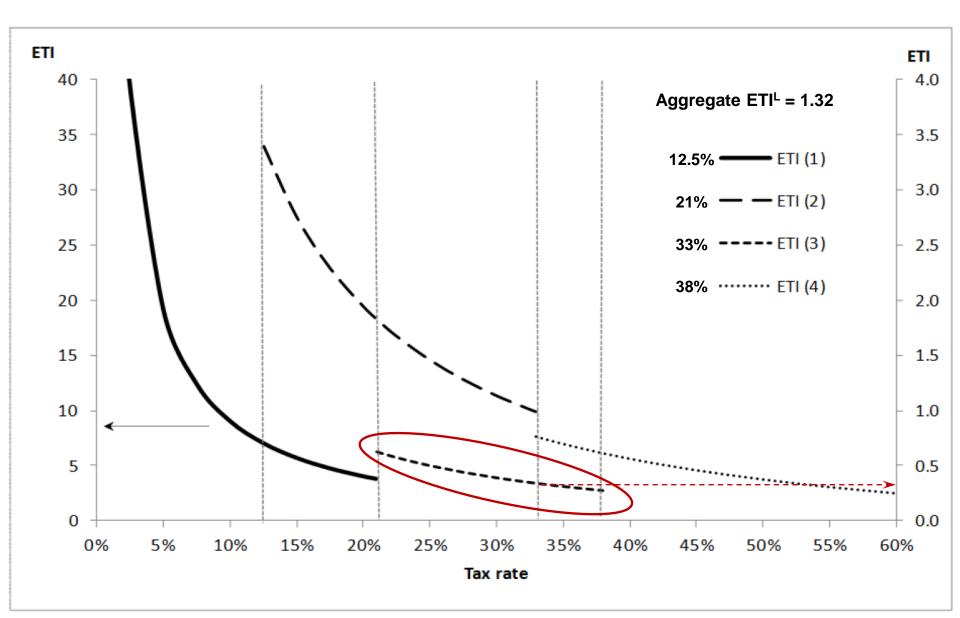
Taxable income distribution & ETI^L



Cumulative distribution of ETI^Ls



Simulating changes in MTRs on ETILs



Simulating changes in MTRs on Aggregate ETI (with/without children)

	Income threshold	ETI_k^L using τ_k s for:	
k	a_k	no children	2 children
1	1	7.0	7.0
2A	$14,\!000$	1.822	1.375
$2\mathrm{B}$	$36,\!000$		0.213
3	48,000	0.338	0.148
4A	70,000	0.616	0.044
$4\mathrm{B}$	80,000		0.621
ALL		1.323	0.892

ETIL_k: $\eta_{y_i,1-\tau_k}^L = \eta'_{T_i,\tau_k} \left(\frac{y_i - a_k^*}{y_i}\right) \left(\frac{1 - \tau_k}{\tau_k}\right)$

The revenue-maximising tax rate

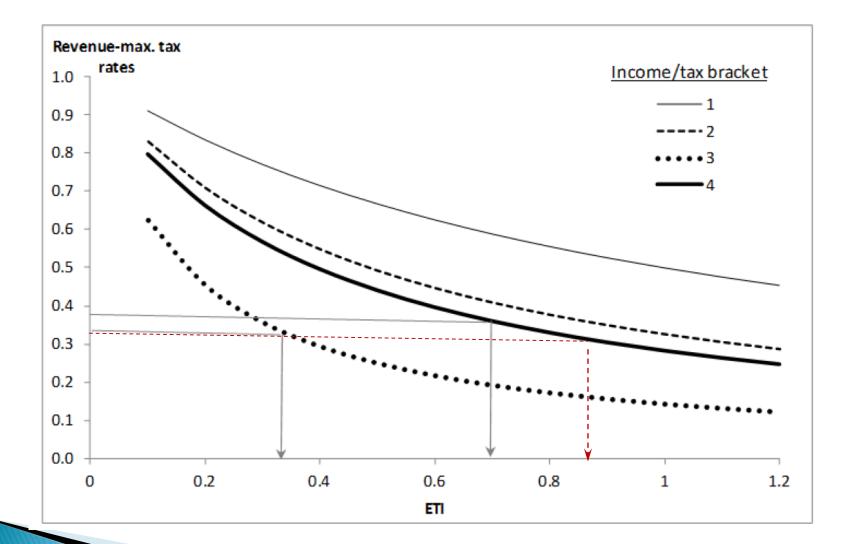
Can re-arrange the ETI^L expression to yield expression for the rev-max. tax

 $= \frac{1}{(1+\eta_{u+1-\tau_{1}})}$

rate:
$$\tau_k^L = \frac{(y_i - a_k)}{y_i(1 + \eta_{y_i, 1 - \tau_k}) - a_k}$$

(proportional tax)

The revenue-maximising tax rate



Conclusions

- Identifying the 'right side' of the Laffer Curve more complex than usually recognised.
 - ETI^Ls determined by (i) a mechanical effect; (ii) an income threshold effect; (iii) a tax rate effect. Each differs by taxpayer.
- Revenue-negative responses could be more prevalent than is generally supposed.
 - ETILs found in the estimated range of 'actual' ETIs for significant sub-sets of taxpayers.

Conclusions

- ETI^Ls for high income taxpayers can be especially low (above but close to thresholds) and estimated ETIs generally larger for those taxpayers.
- ETI^Ls are affected (intentionally or unintentionally) by tax structure changes and exogenous income growth.
- Pareto efficiency requires minimising these revenue-negative responses.